Ta strona wykorzystuje pliki cookies. Korzystając ze strony, zgadzasz się na ich użycie. OK Polityka Prywatności Zaakceptuj i zamknij X

TOPOLOGY AND GROUPOIDS Ronald Brown

23-06-2014, 3:42
Aukcja w czasie sprawdzania nie była zakończona.
Cena kup teraz: 161.70 zł     
Użytkownik bookstreet
numer aukcji: 4270212841
Miejscowość Kalisz
Zostało sztuk: 10    Wyświetleń: 2   
Koniec: 23-06-2014 03:53:20

Dodatkowe informacje:
Stan: Nowy
Okładka: miękka
Kondycja: bez śladów używania
info Niektóre dane mogą być zasłonięte. Żeby je odsłonić przepisz token po prawej stronie. captcha

978<span class=hidden_cl>[zasłonięte]</span><span class=hidden_cl>[zasłonięte]</span>54271, 978<span class=hidden_cl>[zasłonięte]</span><span class=hidden_cl>[zasłonięte]</span>96272, 978<span class=hidden_cl>[zasłonięte]</span><span class=hidden_cl>[zasłonięte]</span>73498, 978<span class=hidden_cl>[zasłonięte]</span><span class=hidden_cl>[zasłonięte]</span>76018, 978<span class=hidden_cl>[zasłonięte]</span><span class=hidden_cl>[zasłonięte]</span>88336, 978-<span class=hidden_cl>[zasłonięte]</span><span class=hidden_cl>[zasłonięte]</span>54271, 978-<span class=hidden_cl>[zasłonięte]</span><span class=hidden_cl>[zasłonięte]</span>96272, 978-<span class=hidden_cl>[zasłonięte]</span><span class=hidden_cl>[zasłonięte]</span>73498, 978-<span class=hidden_cl>[zasłonięte]</span><span class=hidden_cl>[zasłonięte]</span>76018, 978-<span class=hidden_cl>[zasłonięte]</span><span class=hidden_cl>[zasłonięte]</span>88336

 
 
 
 
TEL: 607-[zasłonięte]-671
GG: [zasłonięte]16851
EMAIL: [zasłonięte]@bookstreet.pl

 

Kupując kilka książek za wysyłkę płacisz tylko raz! 

Do realizacji zamówienia przystępujemy po otrzymaniu zapłaty za towar lub wybraniu opcji przesyłki za pobraniem. Książki wysyłamy w ciągu 5-7 dni roboczych, nie ma możliwości szybszej realizacji.
Wystawiamy faktury VAT.

 

Paczkomaty InPost

 
 

Topology and Groupoids

TOPOLOGY AND GROUPOIDS Ronald Brown

 

 

PRODUCT DETAILS:
Author: Ronald Brown
Language: English
Publisher: BookSurge Publishing
Publication Date: 24 Feb 2006
Dimensions: 2.7 x 15 x 22.5 cm
Format: Paperback
Pages: 538
Condition: NEW
Product_ID: 14196B7228

 

 

This is the third edition of a classic text, previously published in 1968, 1988, and now extended, revised, retitled, updated, and reasonably priced. Throughout it gives motivation and context for theorems and definitions. Thus the definition of a topology is first related to the example of the real line; it is then given in terms of the intuitive notion of neighbourhoods, and then shown to be equivalent to the elegant but spare definition in terms of open sets. Many constructions of topologies are shown to be necessitated by the desire to construct continuous functions, either from or into a space. This is in the modern categorical spirit, and often leads to clearer and simpler proofs. There is a full treatment of finite cell complexes, with the cell decompositions given of projective spaces, in the real, complex and quaternionic cases. This is based on an exposition of identification spaces and adjunction spaces. The exposition of general topology ends with a description of the topology for function spaces, using the modern treatment of the test-open topology, from compact Hausdorff spaces, and so a description of a convenient category of spaces (a term due to the author) in the non Hausdorff case. The second half of the book demonstrates how the use of groupoids rather than just groups gives in 1-dimensional homotopy theory more powerful theorems with simpler proofs. Some of the proofs of results on the fundamental groupoid would be difficult to envisage except in the form given: `We verify the required universal property'. This is in the modern categorical spirit. Chapter 6 contains the development of the fundamental groupoid on a set of base points, including the background in category theory. The proof of the van Kampen Theorem in this general form resolves a failure of traditional treatments, in giving a direct computation of the fundamental group of the circle, as well as more complicated examples. Chapter 7 uses the notion of cofibration to develop the notion of operations of the fundamental groupoid on certain sets of homotopy classes. This allows for an important theorem on gluing homotopy equivalences by a method which gives control of the homotopies involved. This theorem first appeared in the 1968 edition. Also given is the family of exact sequences arising from a fibration of groupoids. The development of Combinatorial Groupoid Theory in Chapter 8 allows for unified treatments of free groups, free products of groups, and HNN-extensions, in terms of pushouts of groupoids, and well models the topology of gluing spaces together. These methods lead in Chapter 9 to results on the Phragmen-Brouwer Property, with a Corollary that the complement of any arc in an n-sphere is connected, and then to a proof of the Jordan Curve Theorem. Chapter 10 on covering spaces is again fully in the base point free spirit; it proves the natural theorem that for suitable spaces X, the category of covering spaces of X is equivalent to the category of covering morphisms of the fundamental groupoid of X. This approach gives a convenient way of obtaining covering maps from covering morphisms, and leads easily to traditional results using operations of the fundamental group. Results on pullbacks of coverings are proved using a Mayer-Vietoris type sequence. No other text treats the whole theory directly in this way. Chapter 11 is on Orbit Spaces and Orbit Groupoids, and gives conditions for the fundamental groupoid of the orbit space to be the orbit groupoid of the fundamental groupoid. No other topology text treats this important area. Comments on the relations to the literature are given in Notes at the end of each Chapter. There are over 500 exercises, 114 figures, numerous diagrams. See http://www.bangor.ac.uk/r.brown/topgpds.html for more information. See http://mathdl.maa.org/mathDL/19/?rpa=reviews&sa=viewBook& bookId=69421 for a Mathematical Association of America review.

 

 

 

Książki wysyłamy w ciągu 5-7 dni roboczych.

 

 

 GALOIS THEORY Ian Stewart

 MATHEMATICS Timothy Gowers

 AN INTRODUCTION TO CATEGORY THEORY Harold Simmons

 SCHAUM'S OUTLINE OF GROUP THEORY Baumslag

 A CONCISE COURSE IN ALGEBRAIC TOPOLOGY J May