Ta strona wykorzystuje pliki cookies. Korzystając ze strony, zgadzasz się na ich użycie. OK Polityka Prywatności Zaakceptuj i zamknij X

RACHUNEK RÓŻNICZKOWY I CAŁKOWY Kuratowski SPIS

27-11-2014, 16:30
Aukcja w czasie sprawdzania była zakończona.
Cena kup teraz: 7.99 zł     
Użytkownik Profi-Libris
numer aukcji: 4809476979
Miejscowość Katowice
Wyświetleń: 5   
Koniec: 27-11-2014, 15:52

Dodatkowe informacje:
Stan: Używany
Okładka: twarda z obwolutą

info Niektóre dane mogą być zasłonięte. Żeby je odsłonić przepisz token po prawej stronie. captcha

RACHUNEK RÓŻNICZKOWY I CAŁKOWY

FUNKCJE JEDNEJ ZMIENNEJ

Kazimierz Kuratowski

Wydawnictwo: PWN, 1964
Oprawa: twarda płócienna z obwolutą
Stron: 242
Stan: bardzo dobry (-), obwoluta podniszczona, nieaktualne pieczątki

SPIS RZECZY

Przedmowa do wydania pierwszego..
Przedmowa do wydania drugiego

Rozdział I
CIĄGI I SZEREGI

§ 1. Wstęp
1. 1. Różne rodzaje liczb.
1. 2. Zasada indukcji zupełnej..
1. 3. Dwumian Newtona..
1. 4. Nierówność Schwarza
1. 5. Zasada ciągłości (Dedekinda)
1. 6. Wartość bezwzględna.
1. 7. Zbiory ograniczone. Kres górny i dolny zbioru.
1. 8. Aksjomatyka liczb rzeczywistych.
1. 9. Liczby rzeczywiste jako zbiory liczb wymiernych
Zadania

§ 2. Ciągi nieskończone
2. 1. Definicje i przykłady.
2. 2. Pojęcie granicy
2. 3. Ciągi ograniczone.
2. 4. Działania na ciągach.
2. 5. Dalsze własności rachunkowe granicy..
2. 6. Podciągi.
2. 7. Twierdzenie Cauchy'ego
2. 8. Rozbieżność do oo..
2. 9. Przykłady
2.10. Liczba e.
2.11. Ciągi średnich arytmetycznych i średnich geometrycznych danego
ciągu..
Zadania

§ 3. Szeregi nieskończone
3. 1. Definicje i przykłady.
3. 2. Ogólne własności szeregów.
3. 3. Szeregi naprzemienne. Twierdzenie Abela.
3. 4. Szeregi o składnikach dodatnich. Kryteria zbieżności d'Alemberta
i Cauchy'ego..
3. 5. Zastosowania i przykłady..
3. 6. Inne kryteria zbieżności..
3. 7. Szeregi bezwzględnie zbieżne
3. 8. Mnożenie szeregów..
3. 9. Iloczyny nieskończone
Zadania

Rozdział II
FUNKCJE


§ 4. Funkcje i ich granice
4. 1. Definicje
4. 2. Funkcje monotoniczne
4. 3. Funkcje różnowartościowe. Funkcje odwrotne..
4. 4. Funkcje elementarne.
4. 5. Granica funkcji / w punkcie o..
4. 6. Działania na granicy.
4. 7. Warunki istnienia granicy..
Zadania

§5. Funkcje ciągłe
5. 1. Definicje
5. 2. Charakteryzacja ciągłości Cauchy'ego. Interpretacja geometryczna
5. 3. Ciągłość funkcji elementarnych..
5. 4. Ogólne własności funkcji ciągłych.
5. 5. Ciągłość funkcji odwrotnych.
Zadania

§ 6. Ciągi i szeregi funkcji
6. 1. Zbieżność jednostajna.
6. 2. Szeregi zbieżne jednostajnie.
6. 3. Szeregi potęgowe
6. 4. Aproksymowanie funkcji ciągłych przez funkcje przedziałami liniowe
6. 5. Symbolika logiczna.
Zadania

Rozdział III
RACHUNEK RÓŻNICZKOWY JEDNEJ ZMIENNEJ


§ 7. Pochodne rzędu pierwszego
7. 1. Definicje
7. 2. Różniczkowanie funkcji elementarnych..
7. 3. Różniczkowanie funkcji odwrotnych
7. 4. Ekstrema funkcji. Twierdzenie Rolle'a..
7. 5. Twierdzenia Lagrange'a i Cauchy'ego
7. 6. Różniczkowanie funkcji superponowanych
7. 7. Interpretacja geometryczna znaku pochodnej..
7. 8. Wyrażenia nieoznaczone..
7. 9. Pochodna granicy..
7.10. Pochodna szeregu potęgowego
7.11. Rozwinięcie w szereg potęgowy funkcji log(l+a;) i arctgx
7.12 . Asymptoty.
7.13. Pojęcie różniczki..1
Zadania

§8. Pochodne wyższych rzędów
8. 1. Definicje i przykłady.
8. 2. Różniczki wyższych rzędów.
8. 3. Działania arytmetyczne
8. 4. "Wzór Taylora.
8. 5. Rozwinięcia w szeregi potęgowe..
8. 6. Kryterium na ekstrema
8. 7. Interpretacja geometryczna drugiej pochodnej. Punkty przegięcia . .
Zadania

Rozdział IV
RACHUNEK CAŁKOWY JEDNEJ ZMIENNEJ


§9. Całki nieoznaczone
9. 1. Definicje
9. 2. Całka granicy. Całkowalność funkcji ciągłych..
9. 3. Ogólne wzory na całkowanie
9. 4. Całkowanie funkcji wymiernych..
9. 5. Całkowanie niewymierności stopnia drugiego.
9. 6. Całkowanie funkcji trygonometrycznych.
Zadania

§ 10. Całki oznaczone
10. 1. Definicja i przykłady
10. 2. Wzory rachunkowe.
10. 3. Całka oznaczona jako granica sum
10. 4. Całka jako pole.
10. 5. Długość łuku
10. 6. Objętość i powierzchnia figur obrotowych..
10. 7. Dwa twierdzenia o wartości średniej.
10. 8. Przybliżone metody całkowania. Interpolacja Lagrange'a..
10. 9. Wzór Wallisa
10.10. Wzór Stirlrnga
10.11. Całka Riemanna. Całki Darboux, górna i dolna..
Zadania

§ 11. Całki niewłaściwe i ich związek z szeregami nieskończonymi
11. 1. Całki o nieograniczonym przedziale całkowania
11. 2. Całki funkcji nieokreślonych w jednym punkcie.
11. 3. Wzory rachunkowe
11. 4. Przykłady.
11. 5. Funkcja Eulera.
11. 6. Zależność między zbieżnością całki a zbieżnością szeregu nieskończoną
11. 7. Szeregi Fouriera.
11. 8. Zastosowania i przykłady
Zadania
Skorowidz nazw.
Rachunek różniczkowy i całkowy

strona o mnie | nasza oferta | komentarze | kontakt

Copyright © 2011 Profi-Libris Marcin Badocha
created by krzysztofschmidt