Ta strona wykorzystuje pliki cookies. Korzystając ze strony, zgadzasz się na ich użycie. OK Polityka Prywatności Zaakceptuj i zamknij X

Kurs Liczby Zespolone (licencja na 1k.)

19-01-2012, 11:15
Aukcja w czasie sprawdzania nie była zakończona.
Cena kup teraz: 42 zł      Najwyzsza cena licytacji: 42 zł     
Użytkownik etrapez
numer aukcji: 2011518626
Miejscowość police
Kupiono sztuk: 2    Licytowało: 2    Wyświetleń: 65   
Koniec: 20-01-2012 14:39:22
info Niektóre dane mogą być zasłonięte. Żeby je odsłonić przepisz token po prawej stronie. captcha

zobacz moją ofertę

 
 
 
 
 

Nazywam się Krystian Karczyński, mam 31 lat, jestem matematykiem z wykształcenia, absolwentem Politechniki Poznańskiej. Prowadziłem firmę korepetytorską i przez 8 lat nauczałem matematyki w tej formie. Od ponad roku też sprzedaję moje Kursy edukacyjne w Internecie. Przez ten czas pomogłem już tysiącom studentom z wszystkich rodzajów uczelni.

 

 
 

 

Dlaczego nowocześni studenci nie mają problemów z liczbami zespolonymi?

 

shutterstock_317073 Matematyka na studiach - skąd te trudności?

Za "moich" (nie tak bardzo jeszcze odległych czasów - mam 30 lat) czasów normalną częścią nauki matematyki w szkole średniej były granice ciągów i funkcji, pochodne, badanie przebiegu zmienności funkcji i inne zadania z analizy matematycznej. Na zajęciach fakultatywnych miałem też całki nieoznaczone, jak i oznaczone z zastosowaniami.


Systematyczne okrajanie jednak programu spowodowało, że dzisiaj (poza wyspami w postaci co bardziej elitarnych liceów) z taką pochodną uczniowie spotykają się dopiero na studiach i często jest to zderzenie czołowe (o całkach już nawet nie mówię).


Wykładowcy nie mogą poświęcać nauce takich matematycznych podstaw tyle czasu, ile potrzeba. Czasami może to być tylko pół wykładu - w takim tempie, że ledwo nadążymy notować. Pochodnych nie "załapiemy", a na nich opiera się cała dalsza analiza matematyczna. Na dalszych zajęciach już tylko notujemy, nie za bardzo rozumiejąc, co się dzieje na tablicy. Tracimy tak miesiąc lub dwa i budzimy się w sytuacji, w której w olbrzymim stresie trzeba ogarnąć to wszystko na KILKA DNI przed kolokwium, czy egzaminem...



W uzyskaniu dobrych ocen z matematyki na studiach pomogą Ci z pewnością moje multimedialne (obraz wraz z dźwiękiem) prezentacje matematyczne, nagrywane jako pokaz slajdów w PowerPoint (przykład - przejście na postać trygonometryczną). Prezentacje przeznaczone są do odtwarzania na komputerze - przy ich pomocy możesz łatwo i samodzielnie nauczyć się tego, czego wymagają od Ciebie wymagają. Możesz to zrobić sam - we własnym domu i przy własnym biurku (albo nawet we własnej wannie, radzę jednak uważać w tym przypadku z laptopem).

Nagrane prezentacje są czytelne (dzięki zastosowaniu slajdów - koniec problemów typu "panie doktorze, co tam pisze?"), barwne i ciekawe. Omówiłem je żywym językiem, dalekim od monotonnego czytania z kartki.

Do każdej z nich dołączyłem Zadanie Domowe wraz z Rozwiązaniem Zadania Domowego. Dzięki temu podczas nauki nie stajesz się tylko biernym oglądaczem. Podczas samodzielnego rozwiązywania Zadania Domowego możesz utrwalić i nauczyć się (tak, tak, dopiero teraz w sposób najbardziej efektywny) przerabianego materiału. Masz też jasność odnośnie tego, czy coś umiesz - czy jeszcze "nie do końca". Solidnie przygotowany możesz podawać profesorom indeks pewną ręką i zapomnieć o nerwowym obgryzaniu paznokci na korytarzu przed egzaminem.

Materiał Kursu podzielony jest tematycznie na Lekcje (Kurs Liczb Zespolonych składa się z 8 Lekcji). Uczę liczb zespolonych studentów różnych uczelni  już od wielu lat - więc mogłem starannie wyselekcjonować materiał zostawiając rzeczy ważne, a wycinając poboczne dygresje. Nie musisz więc czuć się przytłoczony chaosem i brakami w swoich notatkach, wymieszaniem ćwiczeń z wykładami itp. Możesz w sposób przejrzysty zaplanować swoją naukę i zdefiniować swoje cele - a dzięki temu mieć większą do niej motywację.


Tylko sobie wyobraź...

Po dniu pełnym pracy i bieganiny, późnym wieczorem siadasz w wygodnym fotelu przy kawie i uruchamiasz swój Kurs. Możesz się odprężyć, spokojnie i bez pośpiechu zacząć oglądać i słuchać lekcji następnej po tej, którą skończyłeś ostatnio. Jeśli czegoś nie zrozumiałeś, przerwać i spokojnie przeanalizować raz jeszcze. 

Możesz się uczyć w każdej chwili  – wieczorem, w dzień, wcześnie rano, o 3 w nocy. Możesz robić sobie nawet miesięczne przerwy. Możesz w dowolnym momencie przestać się uczyć i w dowolnym momencie znowu zacząć. Od samego początku nauki wiesz jaki jest Twój cel i wiesz, jak daleko w danej chwili od niego jesteś, dzięki klarownemu i jasnemu podziałowi materiału na tematy. Jeśli nie chcesz się czegoś uczyć, uznajesz, że jest Ci to niepotrzebne – nie robisz tego. Uczysz się z ciekawych, barwnych i wciągających prezentacji multimedialnych.


To tak, jakbyś na każdym wykładzie siedział w pierwszej ławce sam, a wykładowca mówił tylko do Ciebie. Z tą różnicą, że jeśli potrzebujesz więcej czasu, żeby coś zrozumieć, możesz prezentację zatrzymać, albo przewinąć nawet po kilka razy do tyłu, tak, aby w końcu „załapać”. Twój multimedialny „wykładowca” nigdy nie okaże Ci zniecierpliwienia, nie musisz się wstydzić kolegów z grupy...


Na tym polega e-learning. Na tych zasadach opiera się Kurs Liczb Zespolonych eTrapez.


Kolokwium już pojutrze?

Zależy Ci na czasie?


Zakup Kursu eTrapez ściąganego przez Internet to dla Ciebie idealne rozwiązanie ponieważ:


  • nie musisz czekać na przesyłkę i polować na listonosza
  • dostęp do Kursu otrzymujesz najdłużej następnego dnia po wpłynięciu pieniędzy na moje konto


Teraz już tylko poświęć chwilkę i policz, czy to się opłaca. Jak myślisz, ile godzin korepetycji musiałbyś wykupić, aby nauczyć się liczb zespolonych?


Przyjrzyjmy się bliżej. Musiałbyś przerobić:


  • podstawowe operacje na nich (dodawanie, odejmowanie, mnożenie, dzielenie, liczenie modułu, sprzężenie)

  • równania zespolone

  • pierwiastki 2-go stopnia

  • postać trygonometryczną liczby zespolonej

  • podnoszenie do potęgi

  • obliczanie pierwiastków

  • płaszczyzny zespolone

  • postać wykładniczą liczby zespolonej


Czy uważasz, że korepetytor zdąży wytłumaczyć Ci to wszystko w ciągu, powiedzmy, 4 godzin? Tak, żebyś naprawdę dobrze zrozumiał? Ja sądzę, że wyłożenie tego wszystkiego w sposób porządny to minimum 6 godzin. A ile za godzinę liczy sobie korepetytor w Twoim mieście? Masz już w takim razie policzone przybliżone koszty, prawda?


Jeśli tak, to po prostu PORÓWNAJ je z ceną wykupienia edukacyjnego Kursu Liczb Zespolonych (a jest to 42 zł za licencję na jeden komputer). Być może powinieneś też uwzględnić: koszty dojazdu do korepetytora (głównie stracony czas), koszty poświęcania czasu, który akurat za bardzo Tobie nie pasuje (godziny popołudniowe - gdy Ty wolisz się uczyć późno w nocy, albo w okienkach w szkole)...


A czy w ogóle aby na pewno MASZ zaufanego, doświadczonego i pewnego korepetytora w okolicy?


Jeśli porównanie wyszło na korzyść eTRAPEZA, na co czekać?




Co sądzą inni Allegrowicze o Kursie Liczb Zespolonych?

"Super sprzedawca , ekspresowa wysyłka, kurs jest znakomity."
totek2003
"Dla mnie bardzo ciekawa propozycja nauki. Kurs przejrzysty bez "skrótów myślowych". Przydatny w nauce. Świetnie buforuje zderzenie z zagadnieniem. Polecam i ofertę i sprzedającego. "
panrt
WSPANIAŁE KURSY !!!!! Nie ma to jak DOBRY Korepetytor :-) Dziękuję i Pozdrawiam.
Johnthebest


Kurs Liczby Zespolone
Licencja na 1 komputer - wersja do ściągnięcia z Internetu w cenie 42 zł


Kurs Liczby Zespolone jest multimedialnym kursem edukacyjnym do ściągnięcia z serwera (kliknij na link poniżej):



kurs_liczby_zespolone_setup.exe


W razie jakiś problemów z powyższym plikiem możesz też ściągnąć plik zip:



klz.zip


Jego aktywacja wymaga jednak posiadania numeru seryjnego, który wysyłam po wpłynięciu płatności za Kurs (42zł za licencję na 1 komputer). Numer seryjny po aktywacji zostaje przypisany tylko do jednego komputera, aby korzystać z Kursu na innym komputerze trzeba wykupić kolejny numer seryjny (w cenie 42zł). Numer seryjny należy zachować.


Podczas aktywacji Kursu program poprosi o utworzenie zapasowego pliku danych licencyjnych z rozszerzeniem REG, który umożliwi korzystanie z Kursu w przypadku reinstalacji systemu operacyjnego lub sformatowania twardego dysku. Tak utworzony plik trzeba samodzielnie zabezpieczyć (np. nagrać na inną partycję, albo na CD), bo bez niego uruchomienie Kursu po reinstalacji będzie niemożliwe.


W przypadku utraty komputera (na przykład poprzez uszkodzenie) konieczne jest wykupienie dodatkowej licencji (w cenie 42zł).


Otrzymujesz pełną zawartość Kursu w postaci pliku instalacyjnego do ściągnięcia przez Internet. Po ściągnięciu pliku instalacyjnego nie potrzebujesz już dostępu do Internetu.


Składa się z 8 filmów, o łącznej długości około 270, na których tłumaczę i pokazuję jak rozwiązywać zadania z zakresu liczb zespolonych (szczegółowy zakres materiału poniżej). Do nagrań dołączonych jest 80 pytań testowych sprawdzających wiedzę, około 75 zadań praktycznych, a także wzory i schematy potrzebne do rozwiązywania liczb zespolonych, przygotowane do wydrukowania..



W tym Kursie dzielę się wiedzą zgromadzoną przez 8 lat intensywnego nauczania liczb zespolonych studentów różnych uczelni. Dowiesz się z niego, między innymi:

  • co to w ogóle jest liczba zespolona i z czym nie można jej mylić
  • jak prostą sztuczką (dodanie trzeciego równania) radykalnie uprościć obliczanie pierwiastków w postaci algebraicznej
  • jak “w trzech ruchach” sprowadzić liczbę zespoloną do postaci trygonometrycznej
  • jak bezboleśnie obliczać sinusy i kosinusy dla dużych argumentów w podnoszeniu liczby zespolonej do potęgi
  • dlaczego znając jeden pierwiastek z liczby zespolonej można szybciutko wyznaczyć pozostałe
  • że wielomiany zespolone to tylko jeden malutki kroczek w porównaniu do szkoły średniej

…i wielu, wielu innych praktycznych, wypróbowanych “sztuczek”, które oprócz solidnej, ponad 4-godzinnej elementarnej porcji wiedzy pozwolą Tobie zadziwić może nawet samego siebie na kolokwium, czy egzaminie z liczb zespolonych.


 

Pojedyncza Lekcja składa się z:


  • prezentacji video
  • zadania domowego
  • rozwiązania zadania domowego
  • kartek z wzorami potrzebnymi do Lekcji

Wymagania sprzętowe:


  • Windows 2000/XP/2003/Vista/7
  • Około 500 MB wolnego miejsca na twardym dysku
  • Ekran o rozdzielczości minimum 1024 na 600
  • Kodeki do odtwarzania filmów (pakiet przykładowych kodeków dołączony jest do Kursu) 

  • Przeglądarka PDF (plik instalacyjny dołączony do Kursu)


Przykładowe fragmenty Kursu:





Szczegółowy spis treści:

- Wzory pomocne w przekształceniach na postać trygonometryczną

Lekcja 1: Wprowadzenie do liczb zespolonych. Podstawowe działania na liczbach zespolonych.


- odpowiedź na pytanie, czym jest liczba zespolona
- część rzeczywista i urojona liczby zespolonej
- wprowadzenie postaci kartezjańskiej/algebraicznej liczby zespolonej
- dodawanie i odejmowanie liczb zespolonych w postaci kartezjańskiej (przykłady)
- mnożenie liczb zespolonych w postaci kartezjańskiej (przykłady)
- potęgowanie liczb zespolonych w postaci kartezjańskiej (przykłady)
- dzielenie liczb zespolonych w postaci kartezjańskiej (przykład)
- obliczanie modułu liczby zespolonej (przykład)

Lekcja 2: Równania zespolone. Pierwiastki drugiego stopnia liczone w postaci kartezjańskiej.

- równania zespolone
- metoda rozwiązywania
- 4 przykłady równań zespolonych z modułami, sprzężeniami itp.
- pierwiastki drugiego stopnia jako równania zespolone
- 2 przykłady obliczania pierwiastków drugiego stopnia z liczby zespolonej

Lekcja 3: Postać trygonometryczna liczby zespolonej.


- wprowadzenie postaci trygonometrycznej liczby zespolonej poprzez przedstawienie liczby zespolonej na płaszczyźnie
- przejście z postaci kartezjańskiej na trygonometryczną przy pomocy trzech tabelek
- 5 przykładów na przejście z postaci kartezjańskiej na trygonometryczną


Lekcja 4: Podnoszenie liczby zespolonej do potęgi

- wykorzystanie wzoru Moivre'a do podnoszenia do potęgi liczb zespolonych w postaci trygonometrycznej
- obliczanie sinusów i cosinusów dużych kątów
- 4 przykłady na podnoszenie liczby zespolonej w postaci trygonometrycznej do potęgi, w tym połączone z podstawowymi działaniami na niej (odejmowanie i dzielenie)
- przykład na nieadekwatność metody

Lekcja 5: Pierwiastki z liczb zespolonych


- wzór na kolejne pierwiastki z liczb zespolonych w postaci trygonometrycznej
- 2 przykłady obliczania pierwiastków z liczby zespolonej w postaci trygonometrycznej przy pomocy podstawowego wzoru
- wprowadzenie innego wzoru na liczenie kolejnych pierwiastków z liczby zespolonej w postaci trygonometrycznej
- przykład na zastosowanie innego wzoru na liczenie pierwiastków
- pokazanie zalet i wad obu wzorów

Lekcja 6: Równania wielomianowe z liczbami zespolonymi


- pojęcie zespolonego równania wielomianowego
- 2 przykłady na rozwiązywanie równań wielomianowych drugiego stopnia (trójmianów kwadratowych) przy użyciu współczynnika delta (znanego ze szkoły średniej)
- przykład na rozwiązanie równania wielomianowego trzeciego stopnia rozkładem wielomianu na czynniki
- przykład na rozwiązanie równania wielomianowego przy pomocy schematu Hornera
- przykład na rozwiązanie równania wielomianowego przy pomocy obliczania pierwiastków

Lekcja 7: Liczby zespolone na płaszczyźnie


- przedstawienie na płaszczyźnie liczby zespolonej w postaci kartezjańskiej i trygonometrycznej
- 8 przykładów różnych obszarów na płaszczyźnie zespolonej z wykorzystaniem sprzężeń, modułów i podstawowych działań na liczbach zespolonych

Lekcja 8: Postać wykładnicza liczby zespolonej

- wprowadzenie pojęcia postaci wykładniczej liczby zespolonej (wzór Eulera)
- 3 przykłady rozwiązania równań zespolonych z wykorzystaniem postaci wykładniczej liczby zespolonej i podstawowych działań na niej

Do każdej Lekcji (prezentacji) dołączone jest Zadanie Domowe wraz z Odpowiedziami, składające się z części testowej i zadań.

Gdy tylko pieniądze (42zł za licencję na każdy komputer) wpłyną na moje konto wysyłam numer seryjny do Kursu na wskazany przez Kupującego adres e-mail.

 

 

Po zakończeniu transakcji wysyłam Kupującemu fakturę drogę elektroniczną (email). Akceptacja takiej formy otrzymania faktury jest warunkiem koniecznym zakupu Kursu.


Uwaga1! Korzystanie z pojedynczego Kursu jest możliwe tylko na 1 komputerze (1 licencja = 1 komputer).

Jeśli chcesz korzystać z Kursu na swoim komputerze domowym, komputerze w akademiku i laptopie musisz wykupić odpowiednią liczbę licencji (każdy z osobną licencją) - np. chcesz uczyć się z Kursu na 3 komputerach - zakup 3 numery seryjne (łączna cena takiego zakupu to 42 + 42 + 42 = 126zł).


Uwaga2! Kurs wymaga aktywacji.

Po aktywacji Kurs zostaje przypisany do komputera. Od tej pory nie jest możliwe korzystanie z Kursu na innym komputerze.


Numer seryjny po aktywacji zostaje na stałe przypisany do komputera. Nie jest możliwa aktywacja Kursu na innym komputerze (chyba, że po wykupieniu dodatkowych numerów seryjnych). W przypadku utraty komputera (na przykład w wyniku uszkodzenia komputera) konieczne jest wykupienie dodatkowych licencji.