Ta strona wykorzystuje pliki cookies. Korzystając ze strony, zgadzasz się na ich użycie. OK Polityka Prywatności Zaakceptuj i zamknij X

Advanced Engineering Mathematics - Kreyszig Erwin

19-01-2012, 15:29
Aukcja w czasie sprawdzania była zakończona.
Cena kup teraz: 199 zł     
Użytkownik StanleyHimself
numer aukcji: 2037859256
Miejscowość Warszawa
Wyświetleń: 10   
Koniec: 14-01-2012 22:06:31

Dodatkowe informacje:
Stan: Nowy
Okładka: miękka
Rok wydania (xxxx): 2006
Kondycja: bez śladów używania
Język: angielski
info Niektóre dane mogą być zasłonięte. Żeby je odsłonić przepisz token po prawej stronie. captcha

Autor:  Erwin Kreyszig;

Ilość stron: 1248; 

ISBN: 047[zasłonięte]8977; 

Wydawnictwo: Wiley John + Sons.

 

 

Thoroughly updated and streamlined to reflect new developments in the field, the ninth edition of this bestselling text features modern engineering applications and the uses of technology. Kreyszig introduces engineers and computer scientists to advanced math topics as they relate to practical problems. The material is arranged into seven independent parts: ODE; Linear Algebra, Vector Calculus; Fourier Analysis and Partial Differential Equations; Complex Analysis; Numerical methods; Optimization, graphs; and Probability and Statistics.

 

PART A: ORDINARY DIFFERENTIAL EQUATIONS (ODE'S). Chapter 1. First-Order ODE's. Chapter 2. Second Order Linear ODE's. Chapter 3. Higher Order Linear ODE's. Chapter 4. Systems of ODE's Phase Plane, Qualitative Methods. Chapter 5. Series Solutions of ODE's Special Functions. Chapter 6. Laplace Transforms. PART B: LINEAR ALGEBRA, VECTOR CALCULUS. Chapter 7. Linear Algebra: Matrices, Vectors, Determinants: Linear Systems. Chapter 8. Linear Algebra: Matrix Eigenvalue Problems. Chapter 9. Vector Differential Calculus: Grad, Div, Curl. Chapter 10. Vector Integral Calculus: Integral Theorems. PART C: FOURIER ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS. Chapter 11. Fourier Series, Integrals, and Transforms. Chapter 12. Partial Differential Equations (PDE's). Chapter 13. Complex Numbers and Functions. Chapter 14. Complex Integration. Chapter 15. Power Series, Taylor Series. Chapter 16. Laurent Series: Residue Integration. Chapter 17. Conformal Mapping. Chapter 18. Complex Analysis and Potential Theory. PART E: NUMERICAL ANALYSIS SOFTWARE. Chapter 19. Numerics in General. Chapter 20. Numerical Linear Algebra. Chapter 21. Numerics for ODE's and PDE's. PART F: OPTIMIZATION, GRAPHS. Chapter 22. Unconstrained Optimization: Linear Programming. Chapter 23. Graphs, Combinatorial Optimization. PART G: PROBABILITY; STATISTICS. Chapter 24. Data Analysis: Probability Theory. Chapter 25. Mathematical Statistics. Appendix 1: References. Appendix 2: Answers to Odd-Numbered Problems. Appendix 3: Auxiliary Material. Appendix 4: Additional Proofs. Appendix 5: Tables. Index.